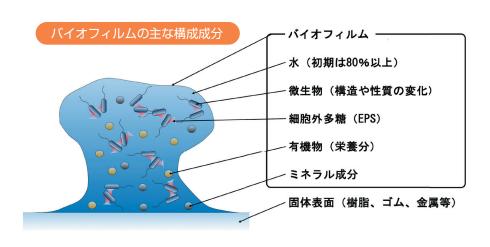


バイオフィルムの恐怖! ポイントと対策は何か?

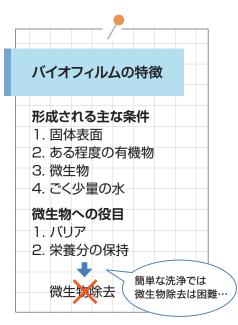
▼今回の号で分かること

突然起こる菌の検出… バイオフィルム対策を特集します!

そもそも バイオフィルムとは? 見逃し厳禁!生産ラインの サニテーションでの "隠れ汚染"ポイント


根本対策 成功事例

様々な食品工場で問題となる微生物。 一般生菌数や真菌数の基準逸脱が発生し、どこに問題があるのかがわからな いまま、思い当たる様々な場所を洗浄・殺菌し、いつの間にか収束。 翌年、また同じような問題が再発。 このような事 例はありませんか? なぜこのような事が起こるかバイオフィルムをキーワードにご紹介します。


いつも見逃す、ちょっとした洗浄不良の場所で形成される

"バイオフィルム"とは、細胞などの微生物が作る細胞外多糖(Extracellular polysaccharide: EPS)が、その他の有 機物でできた粘性のある物質と複合体を形成し、個体表面に固着した細胞膜のことです。ヌメリのようなものであり、川 の中の小石表面や排水口の淡紅色をした付着物、歯垢(プラーク)もバイオフィルムの一種です。

右下にあるバイオフィルムの特徴にある「形成される主な条件」を見てみると、どんな食品工場でもあらゆる食品接触 面で形成される危険性があることがわかります。やっかいなことにたっぷりの水や有機物の中よりも、わずかな水と有機 物をもとに形成されます。つまり、手の届きにくい洗浄不良場所で問題が起きやすいのです。

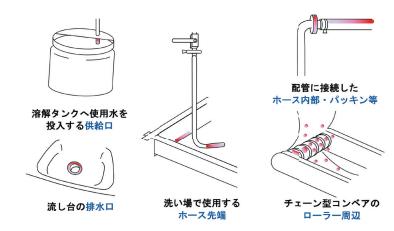
食中毒起因菌	グラム陰性菌	Escherichia coli	大腸菌(衛生指標菌)
		Listeria monocytogenes	リステリア・モノサイトゲネス(6%食塩水に耐性、4℃で増殖)
		Salmonella Typhimurium	サルモネラ属菌の一種(少ない菌数で発症)
		Yersinia enterocolitica	エルシニア・エンテロコリチカ(5℃以下でも増殖)
	グラム陽性菌	Clostridium perfringens	ウェルシュ菌(芽胞形成で耐熱性)
		Staphylococcus aureus	黄色ブドウ球菌(食品中で毒素産生)
腐敗微生物ほか	グラム陰性菌	Alcaligenes faecalis	アルカリゲネス・フェーリカス(自然界に広く存在)
		Enterobacter spp.	エンテロバクター属菌(大腸菌群の一種)
		Flavovacterium meningosepticum	フラボバクテリウム属の1菌種
		Klebsiella pneumoniae	クラブシエラ・ニューモニエ(大腸菌群の一種、肺炎桿菌)
		Pseudomonas aeruginosa	緑膿菌(自然界に広く存在)
		Serratia marcescens	セラチア菌の1菌種(赤色からピンク色を産生)
	グラム陽性菌	Bacillus subtilis	枯草菌(芽胞形成で耐熱性)
		Staphyrococcus sp.	プドウ球菌属の菌(多くの菌種で耐塩性)

バイオフィルムを形成する主な細 菌を表にまとめました。

特に注意したいのは、形成した 微生物が加熱処理に耐性を持つ点 です。例えば、バイオフィルムを形 成した黄色ブドウ球菌は100℃ 10分の加熱でも牛残します。

生産ラインの"隠れ汚染"ポイント 見逃し厳禁!

製造工程では、閉鎖系・開放系ともに対策が 必要となります。


閉鎖系での問題場所

- 流速が遅く、有機物が滞留しやすい場所
- 劣化しやすい部品を使用している場所

開放系での問題場所

- 混合タンク・貯蔵タンク内の見落とし場所
- 使用水の吐出口周辺

日常洗浄できれいになる表面は、比較的問題 は起きにくいですが、配管と配管のつなぎ目や樹 脂・ゴム表面の、目視では気づかないキズに形成

タンク類の中は、シャワーボールや作業者が入っての洗浄、自動 装置での洗浄を行うかと思いますが、タンクに接続される配管類 の内部や接続部、内部上面の見逃し場所、タンクフタの凹凸部に 形成されることがあります。

されることがあります。

CIP中心の配管系(COP頻度が低いもの、デッドエンド部)

分解困難な部品(ポンプ、バルブ、装置内センサーのデッドスペース等)

飲料用熱交換機(ロングプレートよりも従来プレート)

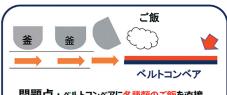
樹脂製ホース類、パッキン、ガスケット

精製水の供給系(SIP方式や熱水ループ方式の管理ではない場合)

タンク内シャワーボール等での洗浄不良場所

精製水、製品等移送配管の出口周辺

ミキサー等の回転部周辺


コンベア類の裏側・回転部・傷がついた表面

洗浄用ホース出口、溶接部等のラフな表面

排水口周辺、床・壁・天井、クーリングタワー

サニテーションでの根本対策 成功事例

米飯加工のベルトコンベアでの事例

問題点:ベルトコンベアに各種類のご飯を直接 のせる為、その都度、殺菌が必要。

- 従来はアルコール噴霧で対応
- 一般生菌数が3×10³の検出

バイオフィルム除去し内部に潜む微生物 を確実に死滅させる過酢酸製剤を使用

- 過酢酸150ppmに変更
- 一般生菌数がゼロに

酒蔵でのサニテーションの事例

パーサンMP2-I 食品添加物 過酢酸製剤 米国オーガニック(OMRI)承認 米国FDA承認

従来はホルマリン、界面活性 剤、アルコール、熱湯殺菌で対応

過酢酸製剤に仕様を変更

- 円盤製麹室、製麹室の除菌
- 木製機器、ステンレス機器の殺菌
- 配管などのスライム除去
- 芽胞菌、真菌に有効、腐食が少ない
- 有機物あっても効果を発揮
- 残留性がなくリンスが簡単

ECサイト"Shop-ES CO"では、本記事でご 紹介したアイテムをす べてご購入いただけま す。ぜひ、この機会にご 活用ください!

明日へ人も環境も

本件に関するお問合せ先

アース環境 サービス株式会社

03-4546-0640

www.earth-kankyo.co.jp 無断複写·複製はご遠慮下さい。